Advanced Computational Analysis

ACA

REPORT

REPORT NO: S2149-1

Revision B

 Title:
 Structural Verification Of Portable 4-Person Bungee Trampoline Amusement

 Device

Client: Mr James Oakey

Author:R. Anderson BEng (Hons)

ADIPS Registration No.: 131230-2

Date: 26th February 2013

4A, Main Road, Gedling, Nottingham NG4 3HP Tel (0115) 9533931

e-mail: info@aca-consultants.co.uk

Summary

This report describes the structural verification of the 4-person, bungee trampoline amusement device, as manufactured by Airmax LeisureZone.

The structural model of the bungee trampoline device was generated from drawings provided, see appendix O, with the modifications shown in figures 4.1, 4.3 and 5.1. Since no design calculations had been carried out by the manufacturer, initial in-house closed form calculations were carried out to substantiate the results of this analysis, ref ACA report S2149-2.

The analysis detailed below was carried out based on loadings from various combinations of ride operation, based on a maximum single passenger mass of 80 kg, bouncing with a maximum inertial acceleration equivalent to 2g.

The results of the analysis and the comparison of these results with the initial closed-form calculations, show that all structural and mechanical components have adequate load-carrying capacity, based on the loading prescribed above and provided the modifications detailed below are adopted.

Index

Summa	ry	2				
Descrip	Description Of Ride					
Method	5					
1)	Structural Analysis	5				
2)	Material Properties And Component Capacities	8				
Results.	10					
Conclus	12					
Recommendations						
Figures						
Appendix A - Certificate Of Conformity For Aluminium Support Poles						
Appendix B - Certificate Of Conformity For Steel Sections						
Appendix C - Conformity Certificate For Steel Cables						
Append	44					
Append	45					
Append	46					
Append	47					
Append	48					
Appendix I – Certificate Of Conformity For Turnbuckle						
Appendix J – Test Certificate For Bungee Cords						
Appendix K – Conformity Certificate For Winch Motor						
Appendix L – Conformity Certificate For Trampoline						
Appendix M – Risk Assessment						
Appendix N – Non-Destructive Test schedule						
Append	Appendix O – Fabrication Drawings Of Bungee Trampoline					
Calculat	tions	68				

Description Of Ride

The 4-person bungee trampoline is an amusement device capable for use either by adult or child participants. The ride is lightweight and fully transportable and is trailer-mounted. It can easily be erected and dismantled for use on any suitable site, either outdoors or indoors (providing adequate headroom is available).

The ride operates by first positioning the passenger on the trampoline. The passenger harness is then fitted and attached to the bungee ropes, on either side of the passenger. The number of bungee ropes used is adjusted, depending on the estimated passenger mass, to give the appropriate 'feel' to the bounce of the participant, without exerting excessive inertial forces on the passenger. This is carried out based on the experience of the ride operator.

During the ride the participant bounces vertically until reaching a maximum height of approximately 6.5 m. At this point the participant experiences a feeling of partial weightlessness. As the passenger moves progressively higher with each bounce, the winding motor reduces the effective length of the ropes, to permit the passenger to release progressively more potential energy with each bounce.

The downwards motion of the participant, at the lowest point, is arrested by a combination of the contact between the participant and the trampoline and the moderate tension in the flexible bungee ropes. Note that it is not always necessary for the participant to make full contact with the trampoline; in some instances the vertical motion is arrested only by the bungee ropes. In this case the flexibility of the bungee ropes would ensure that the maximum inertial forces are reduced.

It is difficult to estimate the maximum passenger forces exerted by the device, due principally to the wide variation possible in participant mass. However an acceptable guide would be approximately 2g absolute maximum inertial acceleration, which would give the ride participant a sensation of twice body mass when bouncing.

A typical view of the 4-person bungee trampoline is shown in figure 1.1.

Method Of Analysis

The analysis of the 4-person bungee trampoline device was performed using the ANSYS finite element program. The structural model of the device was generated from drawings provided with the modification detailed in figures 4.1, 4.3 and 5.1.

The analysis of the bungee-trampoline structure was performed with regard to the initial in-house closed form verification, ref 2149-2.

1) Structural Analysis

The finite element model of the main structure was generated using a combination of BEAM4, LINK10, CONTACT52, MPC184, COMBIN14 and MASS21 element types. The BEAM4, 3dimensional prismatic beam elements were used to model the majority of the ride which included; the trailer chassis, various connecting bolts and pins, the support arms and the aluminium poles. The crosssectional properties of these elements were set to those of the frame and support pole members, as appropriate. The LINK10, 3-dimensional, tension-only elements were used to model the steel guy ropes which constrained the top of each support pole and the bungee ropes. This element type can sustain only tensile loads and is removed from the element formulation if the forces are equal to, or less than zero. The cross-sectional area of the element was set to that of the steel rope, as appropriate. The CONTACT52, 3dimensional, compression-only contact elements were used to model the contact between the base frame and ground. The stiffness of these elements was set to ensure that there was no interpenetration between the frame and the ground. Also this ensured that should the frame lift from the ground during loading these elements would be removed from the element formulation. The MPC184 3-dimensional constraint elements were used to model various welded joints on the structure. This element was set to transfer all forces and moments between 2 nodal positions. The COMBIN14 3-dimsional torsional spring element was used to simulate the action of the pulleys at the top of the aluminium poles. The MASS21 3dimension mass elements, without rotational inertia were used to model the mass of the winch motor and the mass of the trailer wheels and stub axles.

The finite element model comprised a total of 822 elements (762 beam elements, 24 tension-only elements, 6 contact elements, 16 constraint elements, 8 torsional spring elements and 6 mass elements) and 813 nodes. The finite element model of the device is shown in figure 1.2.

Note that due to the inherent flexibility of the structure a large deflexion analysis was performed, to ensure increased accuracy in predicting deflexions and also to include any secondary bending or tension effects in the results. Hence the analysis was non-linear (due to the use of large deflexion effects and non-linear element types) and the model reached convergence to within 0.5% of the overall load on the structure.

The verification of the steel components was undertaken in accordance with the requirements of BS449-2:1969, hence ensuring all working stresses are well within the elastic limit of the material. Therefore the following 4 load cases were used to verify the steel structure.

i) Load Case 1

This load case represented the first of two out-of-balance load conditions. In this load case a single passenger loading was applied at one passenger station. The loading on the passenger was equivalent to 2g, based on a passenger mass of 90 kg and as a worst case, the bungee ropes were assumed to be in the position where the participant would be in contact with the trampoline. This position would be concomitant with a passenger reaching these accelerations at the bottom of the bounce. Further details of the passenger loading are shown in calculation sheet 1.

In addition to the loads described above, the self-weight loading of the structure was included automatically by the finite element program, for all load cases, based on the steel and aluminium densities shown below and an acceleration due to gravity of 9.81 m/s^2

ii) Load Case 2

This load cases represented the second of two out-of-balance load conditions. This load case was similar to load case 1 except that the loading on the structure was derived from two passengers, positioned on adjacent sides of the structure. The purpose of this load case was to examine the effects on the structure due to unbalanced loading on the support poles, at adjacent sides of the frame.

iii) Load Case 3

This load case was again similar to load case 1, but with passenger loading applied at two opposite passenger stations. The purpose of this load case was to examine the effects on the structure due to extreme opposing loads

iv) Load Case 4

The purpose of this load case was to examine the effects on the structure due to the maximum imposed loading. Therefore forces were applied at all four stations.

To verify the aluminium sections the following 4 load cases were created in accordance with BS EN 1999-1:2007 and BS EN 1990:2002;

- v) Load Case 5 = 1.35xDead load + 1.5x Imposed load detailed in load case 1
- vi) Load Case 6 = 1.35xDead load + 1.5x Imposed load detailed in load case 2
- vii) Load Case 7 = 1.35 x Dead load + 1.5 x Imposed load detailed in load case 3
- viii) Load Case 8 = 1.35xDead load + 1.5x Imposed load detailed in load case 4

2) Material Properties And Component Capacities

a) The material properties for the aluminium sections used for the analysis were based on grade 6060
 T66 aluminium, as follows:

$$\begin{split} & E = 70000 \text{ N/mm}^2 \text{ (Young's modulus)} \\ & v = 0.316 \text{ (Poisson's ratio)} \\ & \sigma_{0.2} = 150 \text{ N/mm}^2 \text{ (0.2\% Proof strength)} \\ & \rho = 2710 \text{ kg/m}^3 \text{ (Density)} \end{split}$$
The material certificate for the aluminium sections is shown in Appendix A

b) The material properties for the steel sections used for the analysis were based on grade S235 structural steel (as specified by the device manufacturer), as follows:

$$\begin{split} & E = 207000 \text{ N/mm}^2 \text{ (Young's modulus)} \\ & v = 0.28 \text{ (Poisson's ratio)} \\ & \sigma_y = 235 \text{ N/mm}^2 \text{ (Yield strength)} \\ & \rho = 7850 \text{ kg/m}^3 \text{ (Density)} \end{split}$$
 The material certificate for the steel sections is shown in Appendix B

c) The steel ropes are a standard 6x19 configuration, with a fibre core, to DIN 3055, with a maximum capacity of 9.41 kN. Based on a maximum tensile force of 3.1 kN this will be acceptable. The certificate of conformity for the steel rope is shown in Appendix C.

d) The certificate of conformity for the carabiner is shown in Appendix D. A carabiner of size 12 mm has a loading capacity of 4.4 kN, this will be satisfactory based on maximum load of 3.1 kN

e) The certificate of conformity for the bungee harness is shown in Appendix E and has a maximum load capacity of 7.8 kN. This will be satisfactory based on a maximum load of 1.76 kN. A number of harnesses are supplied to suit various body sizes. However, it is imperative that operator ensures that the appropriate size harness is fitted correctly

f) The certificate of conformity for the D-Shackle is shown in Appendix F. A D-Shackle of size 12 mm has a loading capacity of 5.1 kN, this will be satisfactory based on maximum load of 3.1 kN

g) The certificate of conformity for the eye-nut is shown in Appendix G. An M10 eye-nut has a loading capacity of 3.13 kN, this will be satisfactory based on maximum load of 3.1 kN

 h) The certificate of conformity for the rope clip is shown in Appendix H. However once the steel ropes have been set to the correct length you will need to fit a swage clamp to ensure the steel rope cannot slip.

i) The certificate of conformity for the turnbuckle is shown in Appendix I. An M12 turnbuckle has a breaking load capacity of 7.6 kN, this will be satisfactory based on maximum load of 3.1 kN

j) The test certificate for the bungee cord is shown in Appendix J. The bungee cord has a safe working load of 1.9 kN, this will be satisfactory based on a maximum tensile load of 1 kN.

k) The certificate of conformity for the winch motor is shown in Appendix K. The winch motor has a working load capacity of 4.9 kg, this will be satisfactory based on maximum load of 1.76 kN

1) The worst case condition for alternating stress in a weld is 69 N/mm^2 , as detailed in calculation sheet 15. This weld has been verified and given a fatigue life expectancy of 2 years.

The results of the analysis are presented below.

Results

Load Case	Stresses In	Stress In Steel	Maximum Utilisation Factor	Forces in Steel Over Ropes (kN) In Str	Overall Deflexion	Maximum Reaction Forces (kN)		
	Aluminium Beam Structure (N/mm ²)	Plate Structure (N/mm ²)	In Steel And Aluminium Sections		In Structure (mm)	Fx	Fy	Fz
1	-	17.3	0.71(figure 2.2)	2.4	139.11(figure 2.7)	0.17	4.30	-0.15
2	-	21.3	0.87(figure 2.3)	3.1(<i>figure 2.6</i>)	231.77(figure 2.8)	-0.80	3.67	-0.79
3	-	21.6	0.62(figure 2.4)	2.3	49.74(figure 2.9)	0.04	4.38	0.04
4	-	21.9 (figure 2.1)	0.86(figure 2.5)	2.1	64.08(figure 2.10)	0.02	6.20	0.14
5	-25.6(figure 2.11)	-	0.51	-	-	-	-	-
6	-125.5(figure 2.12)	-	0.82	-	-	-	-	-
7	-48.1(figure 2.13)	-	0.56	-	-	-	-	-
8	-73.1(figure 2.14)	-	0.77	-	-	-	-	-

Table 1 – Summary Of Results For Stresses, Utilisation Factors Deflexions And Base Reaction Forces

Note:

i) The stresses quoted above are the most severe combination of bending and axial stress in any structural component.

ii) The stresses quoted in table 1 above for the plate structures are the von-Mises stress components and should be compared directly with the material yield or proof strength, when examining for elastic failure, i.e.

$$\sigma_{vM} = \frac{\mathbf{f}}{\mathbf{P}_{2}} \mathbf{v}_{\mathbf{T}} \mathbf$$

ii) The deflexion quoted above is the vector sum of the individual Cartesian deflexion components.

iii) The determination of the structural capacities of the various components of the device, the assessment of the critical joints and the fatigue assessment of the critical welds are shown in calculation sheets 2 to 18.

iv) The max reaction of 6.2 kN is equivalent to an average pressure on the ground of 155 kN/m² when a 200x200 mm packing point has been used

Conclusions

The forces determined from the present analysis are concomitant with those predicted by the inhouse closed-form design verification report of this ride, ref ACA report S2149-2. The small discrepancies between the predictions from the closed-form verification and this analysis arise mainly from the method of analysis used in each case. The analysis carried out in the present study uses a nonlinear approach, which more accurately predicts stresses and deflexions. In addition to this the closedform calculations cannot account for the stabilising cables supporting the top of each aluminium pole. Notwithstanding this, the forces resulting from each individual analysis are sufficiently close to ensure that there is no major discrepancy in the resulting stresses and deflexions.

The stresses predicted in the aluminium support poles provide an utilisation factor of 0.82 (based on a limit state analysis to BS EN 1999-1-1:2007), which clearly is adequate based on the permissible value of unity.

For the base frame, the stresses in the steel plates forming the winch motor mounting points provide a minimum factor of safety of approximately 10.7 (for load case 4), this will be acceptable based on a yield strength of 235 N/mm². In addition to this the combination of axial force and bending moments in any member provided a maximum utilisation factor of 0.87. Based on the permissible value of unity this again will be acceptable. *However it is imperative that you adopt the modifications to the winch motor fixing detail and trailer chassis as shown in figures 4.3 and 5.1*

The maximum deflexion in the structure represents approximately 1/26 of the overall height of the device (for load case 2). Whilst this would be excessive for a static structure the deflexions result from dynamic loads and sway of the structure, rather than static vertical deflexion. Hence, since the stresses are relatively low in this component the dynamic deflexion is fully recoverable and will be acceptable.

The welds connecting the 30x30x3 SHS supporting the winch motors to the 30x30x2 SHS forming the trailer chassis, shown in figure 4.5, were identified as the critical welds on the structure. They have been given a predicted fatigue life of approximately 2 years, based on a Miner's rule summation for operation of the device for 240 days per year at 5 working hours per day (see calculation sheet 18). *However it is imperative that an additional 80x80x6 gusset plate be welded at the base of each outrigger as shown in figure 4.1.*

The analysis of the critical pin and bolted connections, shown in calculation sheets 15 and 16, demonstrates that the stresses in the pin connection have adequate strength for the proposed maximum loading.

The material and component certificates provided by the manufacturer and owner demonstrate that those components have adequate load–carrying capacity for the proposed maximum loading. Note that since the trampoline structure is a proprietary item that is TUV certified no further analysis has been undertaken. However the operator must ensure that trampolines do not move laterally during use. It is

recommended that the trampolines are secured and anchored in position or weights are used to prevent movement. Additionally it is the responsibility of the operator to ensure the participants are using the device correctly within the confines of the trampoline.

Note finally that the operator should be vigilant to ensure no passengers greater than 80 kg in mass are allowed to use the ride.

It is clear therefore that all components have sufficient strength to provide a satisfactory working life for the device, based on the assumed maximum loading, providing the recommendations detailed below are adopted.

Recommendations

From the results of the analysis clearly there are no principal structural components on the device which require specific detailed periodic inspection or other detailed investigation, other than the critical welds detailed below.

Nevertheless it would be prudent to periodically check the integrity of all components on a regular basis. Hence the operator should periodically (daily) inspect for parent material or weld cracks, particularly the critical welds. The critical welds on the trailer and outriggers should be inspected non-destructively on an annual basis.

Additionally, all fixing ropes and bungee ropes should be inspected daily and replaced as necessary if there is any evidence of damage and/or fraying.

Whilst the ride could not be classed as extremely boisterous there would be a category of people for which the ride would not be suitable. For example it would be suggested that the following should not be allowed to participate in the ride experience:

Very small children (unless under strict supervision from the operator).

People with a history of neck/back or other skeletal injuries, or other medical problems.

People with a history of heart problems.

Pregnant women.

People with obvious physical and/or mental disabilities, for whom the ride clearly would not be suitable and whose use of the ride would be likely to cause injury (this is the responsibility of the operator, who clearly must be experienced in making this judgment).

It would be appropriate to display signage at the ride atrium, indicating the ride would not be suitable for the above category of participants.

The maximum ground bearing pressure, beneath the ride base, is predicted to be an average of 155 kN/m^2 , based on a 200 mm x 200 mm footprint. This bearing pressure is adequate for most sites on consolidated ground. However it is the responsibility of the ride operator to ensure that the site is capable of carrying this ground pressure.

For passenger safety and to prevent overturning, the device should not be operated in wind speeds greater than 8 m/s.

By the nature of the ride, the inertial forces experienced by the ride participants are governed by the set-up of the bungee rope arrangement, which is strictly under the control of the operator. It is imperative therefore that only very experienced operators should be allowed to control the ride.

Additionally, to prevent collision with spectators, suitable barriers must be placed at least 1.5 m from the extreme outer edges of the trampolines or operating envelope of the bungee. Also the operator must be vigilant to misuse by the participants and/or spectators. If this should occur the device must be halted immediately.

Adecon

R. Anderson

Figures

Figure 1.1 – Typical View Of Bungee Trampoline

Figure 1.2 – Finite Element Model Of Bungee Trampoline

Figure 2.1 – Stresses In Steel Plate Structure, Due To Load Case 4

Maximum Stress = 21.9 N/mm^2

Figure 2.2 – Utilisation Factors In Steel beam Structure, Due To Load Case 1

Figure 2.3 – Utilisation Factors In Steel beam Structure, Due To Load Case 2

Figure 2.4 – Utilisation Factors In Steel beam Structure, Due To Load Case 3

Figure 2.5 – Utilisation Factors In Steel beam Structure, Due To Load Case 4

Page 2222 of

Figure 2.6 – Forces In Steel Ropes, Due To Load Case 2

Maximum Force = 3.1 kN

Figure 2.7 – Overall Deflexion In Structure, Due To Load Case 1

Maximum Deflexion = 139.11 mm

Figure 2.8 – Overall Deflexion In Structure, Due To Load Case 2

Maximum Deflexion = 231.77 mm

Figure 2.9 – Overall Deflexion In Structure, Due To Load Case 3

Maximum Deflexion = 49.74 mm

Figure 2.10 – Overall Deflexion In Structure, Due To Load Case 4

Maximum Deflexion = 64.08 mm

Figure 2.11 – Stresses In Aluminium Beam Structure, Due To Load Case 5

Maximum Stress = 25.6 N/mm^2

Page 2828 of

Figure 2.12 – Stresses In Aluminium Beam Structure, Due To Load Case 6

Maximum Stress $= -125.5 \text{ N/mm}^2$

Page 2929 of

Figure 2.13 – Stresses In Aluminium Beam Structure, Due To Load Case 7

Maximum Stress = -48.1 N/mm²

Page 3030 of

Figure 2.14 – Stresses In Aluminium Beam Structure, Due To Load Case 8

Maximum Stress = -48.1 N/mm²

Figure 3.1 – Axial Forces In Aluminium Beam Structure, Due To Load Case 8

Maximum Axial Force = 11.6 kN

Figure 3.2 – Bending Moments About Major Axis In Aluminium Beam Structure, Due To Load Case 8

Maximum Bending Moment = 1.05 kNm

Figure 3.3 – Bending Moments About Major Axis In Aluminium Beam Structure, Due To Load Case 8

Maximum Bending Moment = 0.91 kNm

Figure 4.1 – Critical Welds

Figure 4.2 – Critical Welds

Figure 4.3 – Critical Welds

Figure 4.4 – Critical Welds

Figure 5.1 – Modifications To Chassis Structure

Plan View

Appendix A - Certificate Of Conformity For Aluminium Support Poles

Φ 824.01	-09		ΦOPI	муля	Р ОТ	инте	ГРИР	анат	А СИС	стеми	A		ALC	ON	IET
Ревизия -	01				QUAL	.ITY С	ERTI	FICAT	E			о	EN IS HSAS 1	O 9001 8001 / E	/ BS EN ISO 1
Producer ALCOMET AD Second Industria BG-9700 Shoun BULGARIA	roducer LCOMET AD econd Industrial Zone G-9700 Shoumen ULGARIA								Page QUALITY CERTIFICATE Na C0017461/16.03.12 EN: 10204.3.1 Customer order: ZZ12/00494						
Buyer INVESTA Sp. z ULZASTAWNA PRUSZCZ GD/ POLAND	Buyer NVESTA Sp. z o.o JI.ZASTAWNA 27 PRUSZCZ GDANSKI POLAND								Contract (Order):DP0002450 Ref. No. Standard EN 755-1 L +10 mm						
Size [mm]	Profile Na	L[mm	a	Pro	duot		Alloy	standar	ď	Tempe	r / stand	ard	Qty. (M	т	
20:2	500-2553	6 000	00	Al. rour	d tube		6060	EN5	73-3	Tee	EN 7	55-2	0.535		
100x5	500-2388	6 000	00	Al. rour	id tube		6060	EN5	73-3	Tee	EN 7	55-2	0.522		
		Chem	ical C	ompo	sition	And	Mech	anical	Prop	erties					1
				Act		emica	Resu	its							1
Size [mm]	Molt Na	81	Fe	Cu	Mn	Mg	Zn	т	Cr	NI	Pb	As	Na	AL	
20x2	91202	0.44	0.20	0.00	0.01	0.48	0.00	0.01	0.00		0.00			98.81	
100x5	7120178	0.50	0.29	0.00	0.04	0.58	0.01	0.01	0.00		0.00			98.55]
				Actu	ial Me	chanio	al Res	ults							

Size (mm)	Profile Na	Rm/MPa	Ro/MPa		*	НВ	
Standard		MIN 215	MIN 160	M	N 6		
20:2	500-2553	225.00	198.00	A50	13.00		
100x5	500-2388	218.00	189.00	A50	14.00		

The products comply with the European directives and regulations (2002/85/EC RoH3, 2000/63/EC ELV) and correspond to the specification.

artment

PDF created with pdfFactory Pro trial version www.pdffactory.com

Figure A1 – Conformity Certificate For Aluminium Grade 6005A T5 Support Poles

Appendix B - Certificate Of Conformity For Steel Sections.

401							A02						A03			
÷.) <i>S</i>	talp	roc	Juk	t S.	. .	ATI TES WE EN	EST 2. ST RE RKS7 10204	.2 PORT LEUGN	2.2 IS 2.2			Nr: Dn.	11118 2011-0	1 952)8-16	
06 amav lustor lestell	St viający: ner: ul ler:	alprodu . Płk. Dą	kt Cen ibka 9	trostal - 30-732	- Krakó Krakóv	w Sp. z v	0.0.						A10 Nr wag Wagon KBCI	опи - Wa no: 1 599	igoon no	
	-3										8					
A08 Nr zai Manu	mówienia ifacturer's wo	orks order n	umber	A07 Nr zam Purcha: Kunder	iówienia kl se order nu	lienta umber	BOI Wy	rób, Pro	oduct, Erze	rugnis	B 0.	2 Gatunel	c, Steel C	irade, M	irke	
B07.2 Nume Lot N	2 er KP lo - Los no	B0 Wj He	17.1 ytop at - Abst	rich	Norma prz According Nach	cdmiotow	ra No Cla Ma	B03 rma klas issificatio terialnon	yfikacyjna on standard m	Nor s Din Ma	ma wymia tensional a ssnorm	irowa standards	B08 Sztuki No of Bunda	wiązek bundles nzahl	B13 Masa r Actual Ist-Mas	zecz. mass ssc
P47	295		ZA	MKN.	KWADR.	60X60X	4.0. KS	ZT. Z/G	HETY Z E	BEDN. O	WALC	.;GAT. 5	3235JRH	KL. I		
	6384 / 6	C	DC15230	03	E	N 10219	-1	E	N 10219-1		EN 1021	19-2		1	2,	,53
P47	529		ZA	MKN.	PROST. 8	30X40X3	.0. KSZ	T. Z/GI	ĘTY Z BI	EDN. G	WALC.	GAT. SZ	35JRH	KL. I		
1	6561 / 5		113621		E	N 10219	-1	E	N 10219-1		EN 102	9-2		2	3,	,71
P47	529		ZA	MKN.	PROST. 8	80X40X4	.0. KSZ	T. Z/GI	ĘTY Z BI	EDN. G	WALC.	GAT. S2	35JRH	KL. 1		
	6609 / 6		132048		E	N 10219	-1	E	N 10219-1	L .	EN 102	19-2		3	6,	,05
P47	529		ZA	MKN.	OKRĄGŁ	Y 26.9X	2 KSZT	Z/GIĘ	TY Z BE	DN. G/V	VALC. ;0	GAT. S23	5JRH K	L.I		
	6807 / 4	0	DC1525	51	E	N 10219	-1	E	N 10219-		EN 102	19-2		5	5	,71
P47	529		Zł	AMKN.	OKRĄGł	Y 26.9X	2.6. KS	ZT. Z/G	IĘTY Z E	BEDN. C	WALC.	GAT. S	235JRH	KL. I		
	6271 / 4		E12389	5	E	N 10219	- i	E	N 10219-	1 -	EN 102	19-2		1	0	,73
P47	529		ZA	AMKN.	OKRĄGł	Y 26.9X	2.6. KS	ZT. Z/G	FIĘTY Z E	BEDN. O	G/WALC	;GAT. 5	235JRH	KL. I		
_	6729 / 4		110506	5		N 10219	-1	E	N 10219-	L	EN 102	19-2		2	2	,84
C71	-C92 Skład o	chemiczny	- Chemic	al compo	sition - Ch	emische 2	usamme	nsetzung								
B07 - He	at - Abstrich	C [%]	Mn [%] Si [%]	P [%]	S [%]	Cr [%]	Ni [%]	Cu [%]	Al [%]	N2 [%]	Nb [%]	Ti [%]	Mo [%]	V [%]	ς _{εν} [%
	110506	0,14	0,48	0,02	0,014	0,011	0,01	0,01	0,01	0,049	0,006	0,002	0,002	0,002	0,003	0,22
	113621	0,16	0,49	0,010	0,006	0,021	0,01	0,01	0,01		0,005	0,002	0,002	0,001	0,003	0,25
E	123895	0,07	0,53	0,012	0,010	0,007	0,03	0,02	0,04	0,034	0,0036	0,0010	0,0010	0,004	0,0010	0,1693
	132048	0,07	0,58	0,021	0,008	0,010	0,03	0,02	0,03	0,040	0,0067	0,0010	0,0010	0,003	0,0013	0,1769
OC	152303	0,07	0,57	0,010	0,014	0,016	0,02	0,02	0,05	0,036	0,0059	0,0010	0,0010	0,003	0,0020	0,1747
OC	152551	0,07	0,55	0,010	0,010	0,010	0,02	0,02	0,04	0,045	0,0052	0,0010	0.0010	0,002	0,0010	0,1703
Włas B0 Nu	sności mecha 7.2 imer KP - Lo	uniczne - M ot No - Los	echanica i no l	l propertie C11 Re [MPa]	es - Mecha Cl Rr	nische Eij 2 n [MPa]	cl3.1 A5 [%	en 6]	C13.2 A50 [%]	C13.3 A80 [D %] R	151 a [μm]	D52 KV [J	·	C69 Rp 0,2	[MPa]
	6271 / 4	4	3	308	39	7				34,1						
	6384 / 0	6		313	43	1	34,4									-
	6561 / 3	5	1	315	40	5			and the	29,0						
	6609 /	6		313	43	1	34,4							a 2000	a . 18	
1 5	6729 /	4		335	41	0				28,0						
	6807 /	4		315	41	5				32.5		3. 49.33	36 ()			
						555						1.00				

Atest nr 11118952

Strona 1

Figure B1 – Conformity Certificate For 80x40x3 RHS

P	St	alp	ro	JUK	t 5.	A.	AT TE WE	EST 2 ST RE CRKS2	.2 PORT LEUGN	2.2 IS 2.2			Nr:	2011-1	0-24	
		120					EN	10204						2011-1	0-24	
A06 Zamawi Customo Bestelle	Sta ający: er: ul.	lprodu Płk. Dą	kt Cen bka 9	trostal - 30-732	Krakó Krakóv	w Sp. z v	. 0.0.						A10 Nr wag Wagon SL635	onu - Wa no: 571	goon no:	
			0													
A08 Nr zam Manufa Wcrksa	ówienia acturer's worl uftragsnumr	ks order n ner	umber	A07 Nr zamd Purchas Kunden	iwicnia kl e order nu bestellnur	ienta imber nmer	B01 W	poz	duct, Erze	eugnis	BO	2 Gatune	c, Steel C	irade, Ma	R12	
B07.2 Numer Lot No	KP - Los no	B0 Wy He	7.1 /top at - Abs	h A trich P	lorma prz According łach	cdmiotow	va No Cla Ma	rma klas assificatio iterialnor	rfikacyjna on standard m	Nor s Dim Mas	ma wymia iensional s isnorm	rowa standards	Sztuki No of I Bunda	wiązek oundles nzahl	Masa n Actual Ist-Mas	zecz. mass isc
P481	16		CI	EOWNIK	RÓWN	OR. 40X	60X403	(3.0. Z/	GIĘTY Z	BEDN.	G/WAL	. ;GAT.	S235JR	KL. I		
1	759 / 3		58704		EN 100	25-1/ EN	10162	E	N 10025-2	2	EN 1016	52	4000000000000	1	1,	96
P481	16		C	EOWNIK	RÓWN	OR. 40X	60X40)	(3.0. Z/	GIĘTY Z	BEDN.	G/WALC	GAT.	S235JR	. KL. I		
11	760 / 3		58702		EN 100	25-1/ EN	10162	E	N 10025-2	2	EN 1016	52		2	4,	09
P481	16		Z	AMKN. K	WADR.	30X307	(2.0. KS	ZT. Z/C	IĘTY Z I	BEDN. C	WALC.	GAT. S	235JRH	KL.I		
1	766 / 2	C	C1530	92	E	N 10219	-1	E	N 10219-1	L	EN 1021	9-2		3	5,	38
P481	16	1.4.4	2.	AMKN. K	WADR.	30X307	(2.0. KS	ZT. Z/C	IĘTY Z I	BEDN. (WALC	;GAT. 9	S235JRH	KL. I		
11	768 / 2	0	DC1530	92	E	N 10219	-1	E	N 10219-	Ε.,	EN 1021	9-2	12	1	(),3
P481	16		K	SZTAŁTO	OWNIK	KWADI	RATOW	Y 40X4	0X1,8 Z/0	GIĘTY 2	BEDN.	G/WAL	C. W GA	T. S235	JRH, K	L. I
1	737 / 1		37899	C	E	N 10219	-1	E	N 10219-	1	EN 1021	9-2		1	1,	03
P481	16		Z	AMKN. K	WADR.	40X402	K2.0. KS	ZT. Z/C	SIĘTY Z I	BEDN. (J/WALC	;GAT. 9	5235JRH	I KL. I	1.00.00	
1	679 / 1	C	C2722	31	E	N 10219	-1	E	N 10219-	l	EN 102	9-2		1	1,	07
P481	16		Z.	AMKN. K	WADR.	40X402	K2.0. K8	ZT. Z/0	HETY Z I	BEDN. (G/WALC	.;GAT. S	5235JRH	IKL. I		
1	704 / 1		13263	4	E	N 10219	-1	E	N 10219-	1	EN 102	19-2		4 -		/,1
P481	16		K	SZTAŁTO	OWNIK	PROST	OKĄTN	Y 50X3	0X1,8 Z/0	JETY 2	BEDN.	G/WAL	C. W GA	T. S235	JRH, K	L.I
1	691 / 1		002721	62	E	N 10219	-1	E	N 10219-		EN 102	0.00		-		17
P483	73 197 / 2		C2715	49 	E	N 10219	-1	E	N 10219-	1 1	EN 102	0A1. 32 19-2	337KH F	1	(9,5
C71-C B07.1 - Heat	Wytop - Abstrich	emiczny C [%]	Chemic Mn [%	al compos	ition - Ch P [%]	emische 2 S [%]	Cr [%]	nsetzung Ni [%]	Cu [%]	Al [%]	N2 [%]	Nb [%]	Ti [%]	Mo [%]	V [%]	G _{EV} [
	132634	0.07	0.54	0.024	0.008	0.010	0.03	0.03	0.07	0,033	0,0059	0,0007	0,0003	0,003	0,0010	0.17
00	153002	0.10	0.36	0.007	0.018	0.012	0.03	0.03	0.07	0.039	0.0056	0.0010	0.0010	0.003	0.0010	0.17
00	271540	0.07	0.53	0.011	0.017	0.000	0.02	0.02	0.07	0.035	0.0049	0.0010	0.0010	0.003	0.0010	0,16
or	271549	0.07	0.55	0.000	0.012	0,009	0,02	0.02	0.05	0.045	0.0043	0.0010	0.0010	0.003	0.0010	0.14
ос ос	2/2102	0,07	0,53	0,008	0,013	0,009	0,02	0,02	0,05	0.044	0.0043	0,0010	0,0010	0,003	0,0010	0.14
OC OC	373331	0,06	0,53	0,010	0,012	0,012	0,02	0,02	0,00	0,044	0,0003	0,0010	0,0010	0,002	0,0010	0,13
OC OC OC	272231		0.31	0,010	0,011	0,009	0,02	0,01	0,03	0,035	0,004			0,002	0,001	0,10
OC OC OC	272231 37899	0,11		101000			0.03	0,01	0,05	0,032	0,002		-	0,002	0,001	0,15
OC OC OC	272231 37899 58702	0,11 0,09	0,35	0,010	0,009	0,008		*	10025301	Sec. 20 (1990)						
OC OC OC	272231 37899 58702 58704	0,11 0,09 0,09	0,35 0,34	0,010 0,020	0,009 0,015	0,008	0,02	0,01	0,03	0,041	0,002			0,002	0,001	0,15
OC OC OC Własn	272231 37899 58702 58704 	0,11 0,09 0,09 iczne - M	0,35 0,34 echanica	0,010 0,020	0,009 0,015 s - Mecha	0,008 0,012 nische Ei	0,02 genschaft	0,01 en	0,03	0,041	0,002			0,002	0,001	0,15
OC OC OC Własn B07. Num	272231 37899 58702 58704 	0,11 0,09 0,09 iczne - M No - Los	0,35 0,34 echanica no	0,010 0,020 Il properties C11 Rc [MPa]	0,009 0,015 s - Mecha C1 Rn	0,008 0,012 nische Ei, 2 n [MPa]	0,02 genschaft C13.1 A5 [%	0,01 en 6]	0,03 	0,041 C13.3 A80 [9	0,002 D %] R	51 a [µm]	D52 KV [J]	0,002	0,001 C69 Rp 0,2	0,15

Figure B2 - Conformity Certificate For 30x30x2 SHS

Appendix C - Conformity Certificate For Steel Cables

M/4 mark	RCOF a która) tączy		Marcopol Sp. z ul. Oliwska 100 tel.: +48 (058) fax: + 48 (059) e-meil: marcopol www.marcopol.	o.o. Producent Šrub . 80-209 Chweszczyne k. Gdyni, 55 40 555, 55 40 565; lich@marcepol.com.pl .com.pl
BankPKD 5.	A 0/Gdynia 12401235	-5009923-8	2700-401112-001	A LOCAL DESCRIPTION OF THE OWNER	NIP 589-000-85-28
	D	EKLAF	RACJA ZGOD	NOŚCI Nr 0	02/3/03
Wyrób.				descent of the	Chwaszczyno, dnia 200
I. Linas	alowa 61.0	8	Lina stalowa AG O	16 .	
2 Lina s	alowa ¢1,5	9.	Lina stalowa #8.0	15.]	ina stalowa ¢20,0
3. Lína s	alowa ¢2,0	10.	Lina stalowa 610.0		
4. Lina si	alowa ¢2,5	11.	Lina stalowa 612.0		
5. Lina st	alowa ¢3,0	12.	Lina stalowa ¢13,0		
6. Lina st	alowa \$4,0	13.	Lina stalowa ¢14,0		8 R I
.7. Lina st	alowa ¢5,0	14.	Lina stalowa ¢16,0		
Marc przedstawion Normy, dokum	opol Sp. z o.o. Produc ymi poniżej normami, enty normatywne, przepi i womiane	ent Śrub nin innymi doki sy.	iejszym deklaruje, że wy umentami normatywnym	rób do którego odno i, lub spełnia (jeśli d	si się niniejsza deklaracja jest zgo otyczy) zamieszczone poniżej prz
l. 1x7 m	PN-69/M-20202	0	6-10+PP 881 4		
2. 1x7 w	PN-69/M-80202	8. Q	6x10+FE wg DIN 30	ou 15. 6	37+FE wg DIN 3066
3. 6x7+F	wg DIN 3055	9.	6x19+FF we DIN 30	60	
4. 6x7+FI	wg DIN 3055	11.	6x37+FE we DIN 30	66	
5. 6x7+FI	wg DIN 3055	12.	6x37+FE wg DIN 30	56	
6. 6x19+F	E wg DIN 3055	13.	6x37+FE wg DIN 30	56	
7. 6x19+F	E wg DIN 3055	14.	6x37+FE wg DIN 30	56	
ll Minimal	na sila zrywaiaca:				
1. 1,08 kN		8.	22,8 kN	15. 21	8 kN
2. 2,00 kN		9.	34,8 kN		a 8
3. 2,40 kN		10.	54,4 kN		
4. 3,70 kN		11.	75,1 kN		
 5,29 kN 6 0.4113 		12.	88,2 kN		
0. 9,41 kN		13.	102 kN		
7. 14,7 KN		14.	134 kN		
W przy przebadać we w inalnego. vlarcopol Sp. z o wprowadzania z	padku wbudowania wyre spólpracy z połączonym no. Producent Śrub prom nian we wszelkich produ	obu w urządze ti elementami uje politykę n ktach opisany	nia, zestawy lub elementy b oraz zgodnie z wymagani ieustannego rozwoju. Marco ch w tym dokumencie bez u	ezpieczeństwa podlegi mi wynikającymi z p pol Sp. z o.o. Produce przedniego powiadom	ujące osobnemu dopuszczenia, wyrób i rzeznaczenia i zakresu stosowania w nt Śrub zastrzega sobie prawo do ienia.
Opracowal:			Zatwierd:	ál:	1
	Technolog H. Stadad Mariusz Siacha	thu rski		Dział)	Sontroli Jakości Scheer Jore lichał Lypa
				** *	V
an a	Biura H	landlowe	9		
IAGYSTOK 5 (77) Belysow 1 Stenstsjørske 10/tu 1,4sc (DBS) 741 36 31 mai: belystoligimerce	BYDGGS2C2 BS-D30 Dysposac of Hetmerska 20 Selufier: 05521 328 selution pl e-meil: bysposace	5 77 88 Mancepel cens of	SHOJNICE 89-808 Charoylowy Dhohioria a. Zwiews 54: Fe= 10521387 78 73 e-milt chojnice@marcopel.com.pl	KATOWICE CD-950 Kasowice ul. Rodeinarth (227 cel/fac: ICO20 202 40 45 e-rust kasowice@waroopolic	KRAKÓW 20-514 Krádow 40 Cestowa 51 technie (1131 654 OB 00) en.jel e-mait krákow@transpol.com.pl
JULIN	CLSZTVN 10-419 Oluztve		SUWALNI 18-400 Severalu	SZCZECIM 71-073 Szczecin	WROCLAW 53-012 Wheelew

Figure C1 – Conformity Certificate For Steel Cables

Load Capacity = 9.41 kN

Appendix D – Conformity Certificate For Carabineer

Figure D1 – Conformity Certificate For 12mm Diameter Carabineer Load Capacity = 450 kg

Appendix E – Conformity Certificate For Bungee Harness

Harnesses for bungy-trampoline

4 sizes and colors : xs orange, s yellow, m blue, L cherry

Approximate dimensions in cm

	XS	s	m	L
waist	64	72	83	93
leg	36	46	55	65

Adjust the length of the belt in cm

	XS	s	m	L
at the waist	27	36	40	41
at the leg	29	40	44	47

It can withstand 800 kg at break.

SAM PPH ul. Franki 38 + 48 691600831 tel/fax +48 71 315 39 71 VAT UE: PL 8951087246

51-348 Wrocław Poland www.bungy-trampolina.com info@bungy-trampolina.com www.sampph.pl

Figure E1 – Conformity Certificate For Bungee Harness Load Capacity = 800 kg

Appendix F - Certificate Of Conformity For D-Shackle

Figure F1 – Conformity Certificate For M12 D-Shackles

Load Capacity = 520 kg

Appendix G – Certificate Of Conformity For Eye-Nut

"OCH-MAN" Zakład Produkcyjno-Handlowy Joachim Ochman Jeżowa ul. Asfaltowa 19 42-793 Ciasna tel./fax 34 / 35-35-654 NIP 575-000-47-72

Odbiorca: "AMAR" Mark Brzenska Sieraków Śląski ul. Wyzwolenia 4 42-793 Ciasna NIP: 575-111-00-22

DEKLARACJA ZGODNOŚCI DOSTAWCY według PN-EN ISO/IEC 17050-1:2005

Nazwa wyrobu: według faktury VAT nr 827/11

Norma/material: według faktury VAT nr 827/11

Wykaz towarów których dotyczy zaświadczenie:

- 1. Bloczek do lin 50 mm pojedynczy.
- 2. Karabińczyk M10x100 strażacki z zabezpieczeniem.
- 3. Karabińczyk M12x140 strażacki z zabezpieczeniem.
- 4. Kausze 6 mm do lin.
- 5. Kausze 10 mm do lin.
- 6. Lina stalowa 6,0 ocynk (6*19).
- 7. Szekla 10 mm ocynk 320kg.
- 8. Śruba rzymska M16x175 hak oko ocynk.
- 9. Zacisk 6,0 mm do lin.
- 10. Zacisk linowy kubełkowy 6,0 mm ocynk.
- 11. Krętlik 6,0 mm A4.
- 12. Krętlik 10,0 mm A4.
- 13. Nakrętka z uchem M12 DIN 582 ocynk.

Odbiór na podstawie warunków: według normy na FV

Wyrób spełnia warunki normy

Figure G1 – Conformity Certificate For M10 Eye-Nut

Load Capacity = 320 kg

Figure H1 – Conformity Certificate For Wire Rope Clip

Figure I1 – Certificate Of Conformity For M12 Turnbuckle

Load Capacity = 310 kg

Appendix J – Test Certificate For Bungee Cords

Reference EB18 Issue Level 4 May 2010

CERTIFICATE OF CONFORMITY

ENGLISH BRAIDS LTD Spring Lane Malvern Worcs WR14 1AL

Tel:-01684 892222 Fax:-01684 892111 Website: www.englishbraids.com E.mail: info@englishbraids.com

CERTIFICATE NO.	1369
DATE OF DESPATCH	06.11.2012
DATE OF CERTIFICATE	6/11/2012
ORDER NO.	SOR016236
CUSTOMER ORDER NO.	James Oakey
	CERTIFICATE NO. DATE OF DESPATCH DATE OF CERTIFICATE ORDER NO. CUSTOMER ORDER NO.

PRODUCT	ISSUE NO	DESCRIPTION	BATCH NO.	QTY	TEST NO.
39120050000		9mm Nylon Static Line Rope White/Blue Static Strength Without Terminations 9mm Type B = 26.7kn Safe Working Load 1.9K	12F0123	50	

Deviations / concession or notes

We certify that the goods listed meet the requirements of English Braids manufacturing specification. All testing is carried out in accordance to BS:EN:ISO 2307:2005 where applicable. The information and our technical advice - whether verbal, in writing or by way of trials - are given in good faith but without warranty. This also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to check it's validity and to test products as to their suitability for the intended purposes. The application and use of our products by you on the advice given are beyond our control and therefore your responsibility. Our products are sold in accordance with our General Conditions of Sale.

igned for and on behalf of English Braids Ltd	Date 06/11/2012
400	22

Figure J1 – Conformity Certificate For Bungee Cords

Figure K1 = Conformity Certificate For Winch Motor, Model HJ203

Load Capacity = 500 kg

Figure L1 – TUV Certificate Of Conformity For Trampoline Structure Maximum User Weight = 100 kg

Severity

- 1 None or Trivial injury / illness / loss 1 person at risk.
- 2 Minor injury. Minor first aid required only Up to 5 persons at risk.
- 3 Injury (reportable). Moderate loss Up to 10 persons at risk.
- 4 Major injury / severe incapacity. Serious loss. Up to 25 persons at risk.
- 5 Fatality / incapacity. Widespread loss. 25 or more persons involved.
 - Likelihood
 - 1 Improbable
 - 2 Remote
 - 3 Possible
 - 4 Likely
 - 5 Almost Certain

When calculating the risk the number of persons exposed and the frequency of exposure to the risk must be taken into account.

Risks that calculate as high MUST have further control measures put into place that reduce the risk BEFORE the activity is carried out.

Medium risk factors should have more control measures introduced where possible to reduce the risk to the lowest possible risk.

Risk	Area							
Hazard	Risk & Identity of Persons Affected	S	Risl ever	k ity	Control Measures	Re	kemaining Risk Severity	
		S	L	RR		S	L	ŘR
Uneven ground	Ride may be unlevel. Risk of becoming unstable and overturning on packing blocks. Serious injury or death to participants, operators and nearby public	5	4	Н	All work force to be trained and supervisor to have appropriate experience. Ground should be assessed prior to build up Always try to assemble on most level ground Use adequate and sufficient packing blocks Regular visual checks on packing areas by trained personnel, re-pack if and when necessary. To be assembled as per manufacturers operating manual.	5	2	L
Soft ground	Risk of ride leveling/packing points sinking into ground. Ride may become unstable and risk of overturning Serious injury or death to participants, operators and nearby public	5	3	М	All work force to be trained and supervisor to have appropriate experience. Ground should be assessed prior to build up Always try to build up on most stable ground possible Use adequate and sufficient packing blocks Regular visual checks on packing areas by trained personnel, re-pack if and when necessary To be assembled as per manufacturers operating manual.	5	2	L

Risk	Structural failure							
Hazard	Risk & Identity of Persons Affected	s	Risk Severity Control Measures		Control Measures	Rei St		ning k ity
		S	L	RR		S	L	RR
Failure of welds on base frame	Ride could become unstable and collapse Serious injury or death to participants, operators and nearby public	5	3	М	Daily and periodic checks and maintenance by adequately trained workforce Adequately trained workforce in operation and evacuation of the ride Repair as and when necessary by qualified/competent person Device not to be opened until repairs etc carried out Annual inspection and NDT by RIB Refer to manufacturers instruction	5	2	L
Failure of pins/brackets supporting & connecting main aluminum arms	Main arm could collapse Serious injury or death to participants, operators and nearby public	5	3	М	Daily and periodic checks and maintenance by adequately trained workforce Adequately trained workforce in operation and evacuation of the ride Repair as and when necessary by qualified/competent person Device not to be opened until repairs etc carried out Annual inspection and NDT by RIB Refer to manufacturers instruction	5	1	L
Failure of aluminum arms	Main arm could collapse Serious injury or death to participants, operators and nearby public	5	3	М	Daily and periodic checks and maintenance by adequately trained workforce Adequately trained workforce in operation and evacuation of the ride Repair as and when necessary by qualified/competent person Device not to be opened until repairs etc carried out Annual inspection and NDT by RIB Refer to manufacturers instruction	5	1	L

Page 55 of 85

Risk	Structural failure							
Hazard	Risk & Identity of Persons Affected	Risk Severity S L RR		Risk verity Control Measures		Remain Risk Severi		ning k ·ity
				RR			L	RR
Failure of winch rope	Participant would not be supported by bungee. Risk of falling from height/being thrown from ride. Serious injury to participants	4	3	М	Daily and periodic checks and maintenance by adequately trained workforce Adequately trained workforce in operation and evacuation of the ride Winch to meet loading requirements as specified by operating manual and this design review Replace bungee as and when necessary by qualified/competent person Device not to be opened until repairs etc carried out Annual inspection and NDT by RIB Refer to manufacturers instruction	4	1	L
Failure of harness	Main arm could collapse Serious injury or death to participants, operators and nearby public	5	3	М	Daily and periodic checks and maintenance by adequately trained workforce Adequately trained workforce in operation and evacuation of the ride Harness to meet loading requirements as specified by operating manual and this design review Replace as and when necessary by qualified/competent person Ensure harness is correct size for participant. Adequately trained operators to ensure harnesses are fitted correctly Device not to be opened until repairs etc carried out Annual inspection and NDT by RIB Refer to manufacturers instruction	5	1	L

Risk	Structural failure								
Hazard	Risk & Identity of Persons Affected	Risk Severity		Risk Control Measures S L		Rem R Sev		emaining Risk Severity	
Failure of electric winch	Participant would not be supported by bungee. Risk of falling from height/being thrown from ride. Serious injury to participants	4	3	M	Daily and periodic checks and maintenance on electrics and power source, and generator for- water- oil-diesel, by adequately trained workforce Adequately trained workforce in operation and evacuation of the ride Repair as and when necessary by qualified/competent person Device not to be opened until repairs etc carried out Annual inspection, and Electrical test by RIB Refer to manufacturers instruction	4	1	L	
Electric shock	Risk of major injury or death to operators, participants and nearby public	5	3	М	All required MCB's and RCD's in place Daily and periodic checks and maintenance on electrics by adequately trained workforce Adequately trained workforce in operation and evacuation of the ride Repair as and when necessary by qualified/competent person Device not to be opened until repairs etc carried out Annual Electrical test by RIB Refer to manufacturers instruction	5	1	L	

Risk	Structural failure							
Hazard	Iazard Risk & Identity of Persons Affected		Risk Severity		Control Measures		Remaining Risk Severity	
			S L RR			S	L	RR
High winds	Risk of major injury or death from participant being blown off normal trajectory to overturn of ride	5	3	М	Adequately trained workforce in operation and evacuation of the ride Sufficient checks and maintenance throughout operation by adequately trained persons Device to be operated only in wind speeds as specified by the manufacturer and in the design review. Device to be disassembled in wind speeds greater than 8 m/s. Device to be guy roped down if excessive movement results when not in use	5	1	L
Age of passengers	This type of ride may cause distress to young participants. Young riders may lack the ability to understand the dangers associated with misbehaving on this ride	2	2	L	Adequately trained workforce in operation and evacuation of the ride Injuries etc are not always visible to operator/attendants therefore safety and instructional signage should be clearly visible Operator to give verbal instruction if necessary Refer to manufacturers instruction	2	1	L

This risk assessment report covers the operation of the attraction when used as an amusement device. It is based on an overview of the risks associated with the device. It does not cover detailed component failure. The assessment is based on engineering and operational aspects of the device and does not take into account personal or legislative risks. Each hazard/risk has been reviewed individually to ensure that all required actions have been taken to reduce the risk, so far as reasonably practicable and in line with the manufacturer's recommendation. As there is no statistical data available this risk assessment is based on the experience, judgement and knowledge of the device by the manufacturer and various Owner/Operators. There is a manufacturers operation manual in place for owner/controller reference.

NB;

Operation and maintenance should only be carried out by an adequately trained adult after instruction and training from the manufacturer.

When the 'Bungee Trampoline' is owned/controlled by anyone other than the manufacturer if there is any part of the assessment or operations manual that they do not understand they should consult the manufacturer as soon as possible.

All maintenance and training should be documented.

The manufacturer's instruction should be followed at all times

Item	Description/Location	Test Method	Frequency Of Test
Trailer chassis	Welds on trailer chassis at points where out riggers	MPI	Annually
	connect to chassis.		
	Weld connecting arm support to chassis		
Arm pins	All pins in the ends of the arms connecting arms to	UTS/MPI	Annually
	trailer chassis		
Arm joints	All joint brackets	Visual	Daily By Operator
			Annually
Winch rope	Winch ropes	Visual	Daily By Operator
			Annually
Bungee cords	Bungee cords	Visual	Daily By Operator
			Annually
Harness	Harness	Visual/	Daily By Operator
		Functional	Annually
Winch motor	Winch motor and winch motor anchor bolts	Visual/	Daily By Operator
		Functional/ Tightness check	Annually

BUNGEE TRAMPOLINE RIDE NDT SCHEDULE FOR ROUTINE TESTING OF CRITICAL PARTS

100% of all items listed must be visually examined unless stated.

Any and all defects found must be reported to the AIB.

Any previous weld repairs must be recorded.

Any areas outside the scope of the schedule must be examined by the NDT engineer if deemed relevant, and reported to the AIB Eddy Current may be used as an alternative or in combination with other listed Test Methods where appropriate.

All items to be sufficiently dismantled for proper and adequate NDE

Remove any flaky paint, corrosion and de-grease. Remaining paint layers to be no more than the maximum thickness to allow proper and adequate NDE

Appendix O – Fabrication Drawings Of Bungee Trampoline

Figure O1 – Details Of Trailer Chassis

Figure O2 – Modified Details Of Trailer Chassis, Lower Section Only

Figure O3 – Modified Details Of Trailer Chassis, Top Section Only

Page 64 of 85

Figure O4 – Details Of Pole Support Bracket

Figure O5 – Details Of Outrigger

Page 66 of 85

Calculations									
Advance 4a, Main Road Telephone 01									
Client : <i>Airmax Inflatable</i> ACA Contract No : <i>S2149-1</i> ACA									
Date : 27 th February 2013 Engineering									
Description Trampoline	: Structural Ve	erification Of Trai	iler Mounte	ed 4-Person	n Bunge	e	Consultants		
1.0	Londing Yan	FILLING							
1.1	Self weight Self weight la based on man Estimated ma Estimated ma Passenger lo Passenger ma Equivalent a Equivalent fo	rading was include terial densities an ass of harness = 10 ass of winch moto ass of wheel and st ading ass = 80 kg cceleration = $2x9$. Force = $19.62x$ 80	ed automat acceleration 0 kg r = 30 kg tub axle = .81 = 19.62 $+ 10^{a} = 17$	tically by the on due to gr 40 kg each 2 m / s ² 66 N	e FE pı ravity o	rogram, f 9.81 m / s	2		
Prepared By: R. Anderson				Checked B	By: Dr I	M. Lacey			
© ACA 2013		Section: 1		Sheet: 1	C	of 18			

Advanced 4a, Main Road, Telephone 0115	uk	ACA							
Contract No	. <i>S2149</i>			Engineering Consultants					
2.0	Section	n Verification	Constitution						
2.1	Load C Steel P $\sigma_{vm} = 1$ Factor Maxim	Case 1 Plate Section $7.3 N / mm^2 < 235 N / mm^2$ rof safety on yield strength = 2000 roum deflexion = 139.11	2 ₽₽ £ 17.3 = 13.6 Satisfactory						
	Suggest permissible deflexion = $\frac{s_{\text{perf}}}{180} = \frac{6000 \text{ f}}{180} = 33.33 \text{ mm}$								
	$UF = \frac{139111}{33} = 4.22 > 1$ Satisfactory Based On Dynamic Deflexion								
2.2	Load C Steel P $\sigma_{vm} = 2$	Case 2 Plate Section $21.3 N/mm^2 < 235 N/mm^2$							
	Factor of safety on yield strength = $\frac{2255}{21.3} = 11.0$ Satisfactory								
	$Maximum \ deflexion = 231.77$								
	Suggest permissible deflexion = $\frac{s_{\text{perf}}}{180} = \frac{6000 \text{ f}}{180} = 33.33 \text{ mm}$								
	$UF = \frac{221171}{33.33} = 6.95 > 1$ Satisfactory Based On Dynamic Deflexion								
2.3	Load Case 3 Steel Plate Section $\sigma_{vm} = 21.6 N / mm^2 < 235 N / mm^2$								
	Factor	of safety on yield strength =	21.6 E 10.9 Satisfactory						
	Maxim	um deflexion = 139.11	re 6000e						
	Sugges	st permissible deflexion = $\frac{3}{180}$	$1 = \frac{33.33}{180} = 33.33 mm$						
	$UF = \frac{2}{3}$	1977 f 33.33 = 1.49 > 1 Satisfactory	Based On Dynamic Deflexion						
Prepared B	y: R. An	derson	Checked By Dr M. Lacey						
© ACA 201	13	Section: 2	Sheet: 2 of: 18						

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

Contract No. S2149

Т			Consultants
2.4 Load C Steel H $\sigma_{vm} = 2$ Factor Maxim Sugge UF = 2	Case 4 Plate Section $21.9 N / mm^2 < 235 N / mm^2$ r of safety on yield strength = hum deflexion = 231.77 st permissible deflexion = $\frac{s_{FF}}{180}$ 6408 f 33.33 = 1.92 > 1 Satisfactory	$235 \text{ ff} \\ 21.9 = 10.7 \text{ Satisfactory}$ $35 \text{ ff} = 6000 \text{ ff} \\ 180 = 33.33 \text{ mm}$ 36 Based On Dynamic Deflexion	Consultants
Prepared By: <i>R. An</i>	derson	Checked By Dr M. Lacey	
© ACA 2013	Section: 2	Sheet: 3 of: 18	

ACA

Engineering

Advanced 4a, Main Road, Telephone 0115	ACA						
Contract No	Engineering Consultants						
3.0	Section						
3.1	permis Real co	sible stresses have been i onstant 2 @ 80x40x3 RHS	ed by 275 275 ponent AA				
2.0	$\lambda = \frac{1}{2}$ $p_{c} = 97$ $p_{t} = 14$ $M_{bx} = -$ $M_{by} = -$ $Real cos$						
3.2	$\lambda = 5000000000000000000000000000000000000$						
3.3	Real constant 4 @ $30x30x2$ SHS, component AC $\lambda = \frac{1460x085}{11.4} = 109$ $p_c = 72x220x10^{@3} = 15.8 kN$						
3.4 $p_{t} = 145x220x10^{\circ} = 31.9 kN$ $M_{b} = 154x1.89x10^{\circ} = 0.29 kNm$ Real constant 7 @ 80x80x3 SHS, component AD $\lambda = \frac{1660x160}{31.3} = 80.5$ $p_{c} = 93x914x10^{\circ} = 85 kN$ $p_{t} = 145x914x10^{\circ} = 132.5 kN$ $M_{b} = 154x22.5x10^{\circ} = 3.47 kNm$							
Prepared By	Checked By Dr M. Lacev						
© ACA 201	13	Section: 3		Sheet: 4 of: 18			
Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. ACA Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk Engineering Contract No. S2149 Consultants 3.5 Real constant 10 @ 50x50x4 SHS @ component AE $p_c = 141x719x10^{\circ 3} = 101.4 \, kN$ $p_t = 145x719x10^{\circ 3} = 104.3 \, kN$ $M_{h} = 154x9.99x10^{\circ} = 1.54 kNm$ 3.6 Real constant 17 @ 30x30x3 SHS, component AF $\lambda = \frac{4801085}{10.9} = 37.4$ $p_c = 129x314x10^{\circ 3} = 40.5 \, kN$ $p_t = 145x314x10^{\circ 3} = 45.5 \, kN$ $M_b = 154x2.5x10^{\circ} = 0.385 \, kNm$ Load case 1 @ maximum utilisation in component AA 3.7.1 $UF_{\text{max}} = \frac{365}{65.4} + \frac{065}{2.09} + \frac{065}{1.39} = 0.64 < 1 \text{ Satisfactory}$ 3.7.2 Load case 2 @ maximum utilisation in component AA $UF_{max} = \frac{5\pi^2 f}{65.4} + \frac{0\pi^2 f}{2.09} + \frac{0\pi^2 f}{1.39} = 0.85 < 1$ Satisfactory Load case 3 @ maximum utilisation in component AA 3.7.3 $UF_{\text{max}} = \frac{3655}{65.4} + \frac{0651}{2.09} + \frac{0655}{1.39} = 0.55 < 1$ Satisfactory 3.7.4 Load case 4 @ maximum utilisation in component AF $UF_{\text{max}} = \frac{0.07}{45.5} + \frac{0.007}{0.385} + \frac{0.007}{0.385} = 0.87 < 1$ Satisfactory Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 Section: 3 Sheet: 5 of: 18

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. ACA Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk Engineering Contract No. S2149 Consultants 3.8 100x5 CHS: Real constant 5 For aluminium grade 6060 T66 $f_o = 150 N / mm^2$; $f_u = 195$; $\rho_{o,haz} = 0.43$; $\rho_{u,haz} = 0.56$; BC = A $\gamma_{M1} = 1.1; \quad \gamma_{M2} = 1.25; \quad \varepsilon = S \frac{2501}{150} = 1.29$ Classification of cross section $\beta = 3x s^{2} \frac{m}{t} = 3x s^{2} \frac{47.5}{5} = 13.1$ $\beta_{1f} = 11x1.29 = 14.2 > 13.1 \# = class 2$ $A_e = A; \eta = 1$ Cross section constants $A = 1491 \, mm^2$ $W_{ely} = \frac{1689999}{50} = 33600 \, mm^3; \quad W_{ply} = \frac{169^3}{6} = 45167 \, mm^3$ $r = \frac{1689999}{1491} = 33.6 \, mm$ $\alpha_{2u} = \frac{45167}{33600} = 1.34 \# = 1.25$ Flexural buckling effective length $l_c = 1.5x4080 = 6120 mm$ $\lambda = \frac{6129}{\pi x_{33.6}^{33.6}} \frac{159}{70000} = 2.68$ $\varphi = 0.5^{B} 1 + 0.2^{2} 2.68 @ 0.1^{a} + 2.68^{2} = 4.35$ $\chi = \frac{\mathbf{f}\mathbf{f}_{\mathbf{w}}^{1}\mathbf{w}}{4.35 + \mathbf{q}_{4.35}^{2} @ 2.68^{2}} \mathbf{w} = 0.13$ $N_{Rd} = \frac{Af_o}{\gamma_{M1}} \underbrace{\mathbf{f}}_{1.1x10^3} \underbrace{1491x150}_{1.1x10^3} \underbrace{\mathbf{f}}_{203.3 \, kN}$ Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 Section: 3 Sheet: 6 of: 18

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. ACA Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk Engineering Contract No. S2149 Consultants 3.8 Exponents in interaction formula $\psi_{c} = 0.8$ Bending moment capacities shape factor for class 1 section $\alpha = 1.25$ $M_{Rd} = \frac{\alpha W_{el} f_{o} f}{\gamma} = \frac{1.1577770001150 f}{1.110^6} = 5.73 \, kNm$ $1.1x10^{6}$ Flexural buckling verification $UF = \mathbf{j} \underbrace{\mathbf{j}}_{\chi_{\tau} \omega_{x} N_{Rd}} \mathbf{k}_{Rd} + \frac{\mathbf{j}}{\omega_{0}} \underbrace{\mathbf{j}}_{W_{vRd}} \mathbf{k}_{vRd} + \mathbf{j} \underbrace{\mathbf{j}}_{M_{rRd}} \mathbf{k}_{Rd} \mathbf{k}_{Rd} \mathbf{k}_{Rd} \leq 1$ Axial tension and bending verification $UF = \mathbf{j} \overset{\mathbf{h}}{\underset{\omega_{T}}{\overset{\mathbf{i}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{\Psi}}{\overset{\mathbf{f}_{U}}{\overset{U}}{\overset$ The following utilisation factor represents the most extreme combination of axial force and bending moments for all load cases analysed; Load case 5; $N_{Ed} = @ 6.3 kN; M_{vEd} = 1.08 kNm; M_{zEd} = 0.26 kNm$ $\begin{array}{c} \mathbf{f} \\ \mathbf$ f Load case 6; $N_{Ed} = @ 8.1 kN$; $M_{y,Ed} = 2.25 kNm$; $M_{z,Ed} = 1.78 kNm$ $f = \underbrace{g^{0.8}}_{0.13x203.3} + f = \underbrace{f^{1.7}}_{5.73} + f \underbrace{f^{1.6}}_{5.73} + \underbrace{f^{1.6$ Load case 7; $N_{Ed} = @ 6.6 kN$; $M_{y,Ed} = 1.30 kNm$; $M_{z,Ed} = 0.31 kNm$; $\mathbf{f} = \mathbf{f} + \mathbf{f} +$ Load case 8; $N_{Ed} = @ 11.6 kN fig 3.1; M_{y,Ed} = 1.06 kNm fig 3.2; M_{z,Ed} = 0.91 kNm fig 3.3$ $\mathbf{f} = \mathbf{f}_{0.13x203.3} \mathbf{f}_{\mathbf{f}} \mathbf{f$

Prepared By: R. An	derson		Checked By Dr M. Lacey		
© ACA 2013	Section:	3	Sheet: 7 of: 18		

Advanced Computational Analysis
4a, Main Road, Gedling, Nottingham. NG4 3HP.
Telephone 0115 9533931 e-mail:info@aca-consultants.co.ukContract No. S21493.990x4 CHS;
For aluminium grade 6082 T6
 $f_o = 260 N/mm^2$; $f_u = 310$; $\rho_{o,haz} = 0.48$; $\rho_{u,haz} = 0.60$; BC = A
 $\chi_{M1} = 1.1$; $\gamma_{M2} = 1.25$; $\varepsilon = \approx \frac{250 \text{ fm}}{260} = 0.98$
Classification of cross section
W
W

	• M1	260)
	Classif	fication of cross section	
	$\beta = 3x$	$s^{2} \frac{1}{t} = 3x s^{2} \frac{1}{4} = 13.9t$	$n\beta_{2f} = 16x0.98 = 15.68 > 13.9 \# = class 2$
	$A_e = A$; η = 1	
	Cross s	section constants	
	A = 10	$80mm^2$	$00^{3} \oplus 00^{3}$
	$W_{ely} =$	$\frac{45}{W} = 22205 mm^3; W$	$f_{pl,y} = \frac{90}{6} \frac{10}{6} \frac{1}{2} = 29605 mm^3$
	$r = s^9$	1080 = 30.4 mm	
	$\alpha_{1u} = \frac{2}{2}$	2005 = 1.33 # = 1.25	
	Flexur	al buckling	
	effecti	ve length $l_c = 305 mm$	
	$\lambda = \frac{1}{\pi x}$	97 + 5 + 70000 = 0.19	
	$\varphi = 0.5$	$5^{B}1 + 0.2 \ 0.19 \ @ \ 0.1^{a} + 0.19$	$\theta^2 = 0.53$
	$\chi = 0.5$	$\mathbf{ff}_{\mathbf{w}}^{1}\mathbf{w} \mathbf{w} = 0.98$ 53 + Q 0.53 ² @ 0.19 ²	8
	17	$Af_{a} = 1080 \times 260 = 255 \times 1000$	A.7
	$N_{Rd} \equiv$	$\gamma_{M1} = \frac{1.1 \times 10^3}{1.1 \times 10^3} = 255.3 \text{km}$	N .
Prepared B	y: R. An	derson	Checked By Dr M. Lacey
© ACA 2013 Section: 3		Section: 3	Sheet: 8 of: 18

ACA

Engineering

Consultants

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. ACA Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk Engineering Contract No. S2149 Consultants 3.10 Exponents in interaction formula $\psi_{c} = 0.8$ Bending moment capacities shape factor for class 2 section $\alpha = 1.25$ $M_{Rd} = \frac{\alpha W_{el} f_o f}{f_o f} = \frac{1.251220512691}{f_o f} = 6.56 \, kNm$ $1.1x10^{\circ}$ Flexural buckling verification $UF = \mathbf{j} \underbrace{\mathbf{j}}_{\chi_{z} \omega_{x} N_{Rd}} \mathbf{k}_{Rd} \mathbf{k}_{Rd} + \frac{1}{\omega_{0}} \underbrace{\mathbf{j}}_{M_{yRd}} \mathbf{k}_{yRd} \mathbf{k}_{Rd} \mathbf{$ Axial tension and bending verification $UF = \mathbf{j} \overset{\mathbf{h}}{\underset{\omega_x N_{Rd}}{\overset{\mathbf{i}_{\psi}}{\overset{H}{\mathbf{f}_{r}}}} \overset{\mathbf{h}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{r}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\mathbf{f}_{r}}}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\mathbf{f}_{r}}}}} \overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\mathbf{f}}}}}} \overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\mathbf{f}}}}} \overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}}{\overset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau}}{\underset{\mathbf{f}_{\tau$ The following utilisation factor represents the most extreme combination of axial force and bending moments for all load cases analysed; Load case 5; $N_{Ed} = @ 6.2 kN;$ $M_{vEd} = 0.34 kNm;$ $M_{zEd} = 0.51 kNm$ $\begin{array}{c} \mathbf{f} & \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ 0.98x255.3 \end{array} + \begin{array}{c} \mathbf{f} \\ \mathbf{f$ f Load case 6; $N_{Ed} = @ 8.9 kN;$ $M_{y,Ed} = 0.23 kNm;$ $M_{z,Ed} = 0.23 kNm;$ $\mathbf{f} = \mathbf{g}^{0.8} \mathbf{f} \mathbf{f} \mathbf{f}^{1.7} \mathbf{f} \mathbf{f}^{1.7} \mathbf{f}^{1.7$ Load case 7; $N_{Ed} = @ 6.3 kN;$ $M_{y,Ed} = 0.58 kNm;$ $M_{z,Ed} = 0.59 kNm$ Load case 8; $N_{Ed} = @ 11.5 kN;$ $M_{y,Ed} = 0.09 kNm;$ $M_{z,Ed} = 1.03 kNm$ $\begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ 0.98x255.3 \\ \mathbf{f} \\ \mathbf{$ Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 9 of: 18 Section: 3 Sheet:

Page 76 of 85

		Consultants
4.0 4.1	$C_{\mathbf{q}\mathbf{n}\mathbf{q}\mathbf{r}} \underbrace{\mathbf{Y}\mathbf{r}\mathbf{i}}_{\mathbf{r}\mathbf{r}} \underbrace{\mathbf{y}\mathbf{r}\mathbf{i}}_{\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}r$	vre 4.1 ase 2 400 Nmm N/mm Negligible um Negligible
Prepared B	y: R. Anderson Checked By Dr	· M. Lacey
© ACA 201	13 Section: 4 Sheet: 10	of: 18
	Page 77 of 85	©2013 ACA S2149-1 Revision B

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

Contract No. S2149

ACA

Engineering

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk			ACA	
Contract No. S2149				Engineering Consultants
4.2	Weld constraints $SF_x = 5$ $M_{xx} = 1$ Tensile Force of Force of $Force ofForce ofFar = 9$	connecting 80x40x3 RHS out ring ing 80x40x3 mm continuous fill ing 80x40x3 mm continuous fill forces on weld per mm due to $M_{xx} = \frac{M \text{ ff} \text{ f} \text{ f}}{bd + \frac{d^2 \text{ f}}{3}} \text{ 40x80}$ due to $F_y = 2 \text{ ff} \text{ f} \text{ f} \text{ f} \text{ 40x80}$ due to $F_y = 2 \text{ ff} \text{ f} \text{ af} \text{ f} 2 \text{ 40 + } 4 \text{ af} \text{ f} 2 \text{ 40 + } 4 \text{ af} \text{ f} 2 \text{ 40 + } 4 \text{ af} \text{ af} 2 \text{ af} 3 \text{ f} 3 \text{ af} 5 \text{ af} 3 \text{ af} 5 \text{ af} 5$	in the second equation is the second equation of the second equation is the second equation equation is the second equation is the secon	etailed in figure 4.2
Prepared By: R. Anderson		derson	Checked By Dr M. Lacey	
© ACA 2013 Section: 4		Section: 4	Sheet: 11 of: 18	

Advanced Computational Analysis

4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

Contract No. S2149

© ACA 2013

Section:

4

ACA Engineering Consultants

4.3 Weld connecting 80x40x3 RHS to trailer chassis, detailed in figure 4.2 Assuming 80x40x3 mm continuous fillet weld, Load Case 2 $F_x = 1538 N;$ $SF_y = 2562 N,$ $SF_z = @ 1884 N$ $SM_{xx} = 385190 Nmm, \quad M_{yy} = 230970 Nmm; \quad M_{zz} = 404 Nmm$ Tensile forces on weld per mm Force due to $M_{yy} = \frac{M_{yf}}{bd + \frac{b^2 f}{3}} = \frac{239970}{40x80 + \frac{49^2 f}{3}} = \frac{62 N}{mm}$ Force due to $M_{zz} = \frac{M \mathbf{f}}{bd + \frac{d^2 \mathbf{f}}{2}} \frac{\mathbf{f}}{\mathbf{f}} \frac{\mathbf{f}}{40x80 + \frac{8\mathbf{g}^2 \mathbf{f}}{2}} = 0.08 N / mm Negligible$ Force due to $F_x = 2 \frac{\mathbf{f} \mathbf{f}}{b+d} \mathbf{a} = 2 \frac{\mathbf{f} \mathbf{f}}{40+80} \mathbf{a} = 6 N/mm$ $F_{T} = 62 + 6 = 68 N / mm$ Shear forces on weld per mm Force due to $F_y = 2 \frac{\mathbf{f} \cdot \mathbf{f}}{b+d} \mathbf{a} = 2 \frac{\mathbf{f} \cdot \mathbf{f}}{40+80} \mathbf{a} = 11 N / mm$ Force due to $F_z = 2 \frac{\mathbf{f} \mathbf{f}}{b+d} \mathbf{a} = 2 \frac{\mathbf{f} \mathbf{f}}{40+80} \mathbf{a} = 8 N/mm$ Force due to $M_{xx} = \frac{M_{xx} x \mathbf{f} \mathbf{f}}{bd b + d^{a} + \frac{d^{3} \mathbf{f} \mathbf{f}}{3} \mathbf{f}}$ $\frac{385199}{40x80} 40 + 80^{a} + \frac{86^{3}}{3} f = 30 N / mm$ Resultant shear force $SF_r = {}^{\mathbf{S}}F_y + M_{xx}\sin 26.6 {}^{\mathbf{C}_2} {}^{\mathbf{b}}F_z + M_{xx}\cos 26.6 {}^{\mathbf{C}_2}$ $= \mathbf{\hat{q}} \cdot \mathbf{11} + 30 \sin 63.4^{a_2} + 8 + 30 \cos 63.4^{a_2} = 43 N / mm$ Resultant force on weld $F_{R} = \mathbf{P}68^{2} + 43^{2} = 80 N / mm$ Resultant stress on weld = $\frac{89}{3}x$ $\mathbf{P}_2^{\mathbf{W}} = 38 N / mm^2$ Permissible stress = $125x \frac{2351}{275} = 107 N / mm^2$ Utilisation factor = $\frac{35}{107} = 0.36 < 1$ Satisfactory Prepared By: R. Anderson Checked By Dr M. Lacey

Sheet:

of: 18

12

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

ACA

Engineering

Consultants

Assuming 30x30x2 mm continuous fillet weld, Load Case 2 $F_x = 1036 N;$ $SF_y = 479 N,$ $SF_z = 781 N$ $SM_{xx} = 2590 Nmm$, $M_{yy} = 78444 Nmm$; $M_{zz} = 29191 Nmm$ Tensile forces on weld per mm Force due to $M_{yy} = \frac{4}{bd} \frac{f}{f} = \frac{1}{3} \frac{1}{bd} \frac{f}{f} = \frac{1}{3} \frac{1}{a} \frac{f}{f} = \frac{1}{3} \frac{1}{a} \frac{f}{f} = \frac{1}{3} \frac{1}{a} \frac{f}{f} = \frac{1}{3} \frac{1}{a} \frac{$ Force due to $M_{zz} = \frac{M_{ff}}{bd + \frac{d^2 f}{2}} \frac{29191}{30x30 + \frac{39^2 f}{2}} = \frac{24 N}{mm}$ Force due to $F_x = 2 \frac{F_f}{b+d} a^{f} = 2 \frac{1036}{30+30} a^{f} = 9 N/mm$ $F_{\tau} = 65 + 24 + 9 = 98 N / mm$ Shear forces on weld per mm Force due to $F_y = 2 \frac{\mathbf{f} \mathbf{f}}{b+d} \mathbf{a} = 2 \frac{\mathbf{f} \mathbf{f}}{30+30} \mathbf{a} = 4 N/mm$ Force due to $F_z = 2 \frac{\mathbf{f} \mathbf{f}}{b+d} \mathbf{a} = 2 \frac{\mathbf{f} \mathbf{f}}{30+30} \mathbf{a} = 7 N/mm$ Force due to $M_{xx} = \frac{M_{xx} x \mathbf{f} \mathbf{f}}{bd b + d^{a} + \frac{d^{3} \mathbf{f} \mathbf{f}^{3} \mathbf{f}}{3} \mathbf{f}}$ $\frac{2599 \times 21}{30 \times 30} = \frac{1}{30} = \frac{39^3 \times 21}{3} = \frac{1}{5} = 0.8 N / mm Negligible}{0.8 N / mm Negligible}$ Resultant shear force $SF_r = {}^{\mathbf{b}}F_y + F_z = {}^{\mathbf{c}_2}F_z + {}^{\mathbf{b}}F_z = {}^{\mathbf{c}_2}F_z + {}^{\mathbf{a}_2}F_z = {}^{\mathbf{a}_2}F_z + {}^{\mathbf{a}_2}F_z = {}^{\mathbf{a}_2}F_z + {}^{\mathbf{a$ Resultant force on weld $F_{R} = \mathbf{98}^{2} + 8^{2} = \mathbf{98} N / mm$ Resultant stress on weld = 985_{2} $p_{2}^{W} = 69 N / mm^{2}$ Permissible stress = $125x \frac{235}{275} = 107 N / mm^2$ Utilisation factor = $\frac{6 \mathbf{f}}{107} \mathbf{f} = 0.64 < 1$ Satisfactory Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 14 of: 18 Section: 4 Sheet: ©2013 ACA S2149-1 Revision B Page 81 of 85

Weld at connecting 30x30x3 SHS on trailer chassis, detailed in figure 4.4

ACA

Engineering

Consultants

Advanced Computational Analysis

4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

Contract No. S2149

4.5

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. ACA Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk Engineering Contract No. S2149 Consultants 4.6 12 mm diameter pin connecting 100x5 CHS alluminium arm to trailer chassis Forces and moments due ro ANSYS load case 2 $F_x = 5755 N$ $F_{y} = 901 N$ $M_{xx} = 75 Nmm$ $M_{yy} = 14645 Nmm$ F_y due to $M_{xx} = \frac{75 f}{100} = 0.75 N Negligible$ $F_x \, due \, to \, M_{yy} = \frac{146451}{100} = 146 \, N$ $F_{xT} = \frac{5755}{2} + 146 = 3024 N$ $F_{y} = \frac{9911}{2} = 451 N$ Co @ existant shear force = $\mathbf{q}_{3024}^2 + 451^2 = 3057 N$ Maximum shear stress $\tau_{max} = \frac{3057\pi}{113} \times \frac{4}{3} = 36 N / mm^2$ Permissible shear stress $\tau_p = 125x \frac{225}{275} = 107 N / mm^2$ $UF = \frac{3 \oint f}{107} < 1$ Satisfactory Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 Section: 4 Sheet: 15 of: 18

Advanced 4a, Main Road,	Com Gedling,	putational Analysis Nottingham. NG4 3HP.		
Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk			uk	ACA
Contract No. S2149				Engineering
4.7 4.8	Verific $F_x = 80$ $F_y = 14$ $M_{xx} = 2$ $M_{yy} = 12$ $M_{yy} = 12$ $F_y due$ $F_x due$ $F_x due$ $F_x = 8$ $F_y = 12$ $F_y due$ $F_x = 8$ $F_y = 12$ $F_y due$ $F_x = 8$ $F_y = 12$ $F_y = 1$	ation of alluminium CHS for B 90 N 491 N 204 Nmm 18668 Nmm to $M_{xx} = \frac{2941}{100} = 2 N$ to $M_{yy} = \frac{136691}{100} = 187 N$ 9921 + 187 = 4233 N 4911 - 2 = 748 N xistant shear force = 94233^2 sible bearing stress $F_{b,Rd} = \frac{0.6}{2}$ ation of spigot connection in a cond moments ANSYS due to B 925 N 225670 Nmm 2347400 Nmm verification of 90x4 CHS see of ation of M10 grade 4.8 bolt of force on bolt = $\frac{8411}{2} = 4 kN$ sible shear force = $\frac{0.63490456}{1.25 \times 10^3}$	bearing, forces and moments from A	<i>Consultants</i> NSYS load case 6
Prepared By: R. Anderson		derson	Checked By Dr M. Lacey	
© ACA 2013 Section: 4		Section: 4	Sheet: 16 of: 18	

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk				ACA	
Contract No. S2149				Engineering Consultants	
5.0 5.1	Fatigue analysisMaximum change in weld resultant stressesWeld identified in 4.1 $\sigma_{m} = 56 N / mm^{2}$				
5.2	Assuming stress falls to 0 N when participant is at top of bounce $\Delta \sigma_p = 56 N / mm^2$ Weld identified in 4.2 $\sigma_p = -48 N / mm^2$				
5.3	Assuming stress falls to 0 N when participant is at top of bounce $\Delta \sigma_p = 48 N / mm^2$ Weld identified in 4.3				
5.4	$\sigma_{R_1} = 38 N / mm^2$ Assuming stress falls to 0 N when participant is at top of bounce $\Delta \sigma_p = 38 N / mm^2$ Weld identified in 4.4 $\sigma_R = 1 N / mm^2$				
5.5	$\sigma_{R_1} = 1 N / mm^2$ Assuming stress falls to 0 N when participant is at top of bounce $\Delta \sigma_p = 1 N / mm^2$ Weld identified in 4.5 $\sigma_{R_1} = 69 N / mm^2$ Assuming stress falls to 0 N when participant is at top of bounce $\Delta \sigma_p = 69 N / mm^2$				
Prepared By: R. Anderson		derson	Checked By Dr M. Lacey		
© ACA 2013 Section: 5		Section: 5	Sheet: 17 of: 18		

4a, Main Road, Gedling, Nottingham. NG4 3HP. ACA Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk Engineering Contract No. S2149 Consultants 5.6 Fatigue analysis $\Delta \sigma_p = 69 N / mm^2$ for 80 kg passenger load $\Delta \sigma_p = 69 \times 0.75 = 52 N / mm^2$ for 60 kg passenger load $\Delta \sigma_p = 69 \times 0.5 = 34 N / mm^2$ for 40 kg passenger load For weld class W with $\Delta \sigma = 69 N / mm^2$, predicted fatigue life = 4.79 x10⁵ cycles with $\Delta \sigma = 52 N / mm^2$, predicted fatigue life = 1.12×10^6 cycles with $\Delta \sigma = 34 N / mm^2$, predicted fatigue life = 4.00×10^6 cycles number of cycles per year with 80 kg passenger loading = 0.1x864000 = 86400number of cycles per year with 60 kg passenger loading = 0.20x864000 = 172800number of cycles per year with 40 kg passenger loading = 0.7x864000 = 604800from Miner. s summation $\Sigma = \frac{0.0861}{0.48} + \frac{0.0011}{1.1} + \frac{0.0001}{4.0} = 0.48$ predicted weld fatigue life = $\frac{1}{0.48} \stackrel{f}{=} 2.1$ years **Satisfactory** Note: i^aAbove analysis based on an operational life of 30 cycles / min, 2mins / ride, 12 rides / hour, 5 hours / day, 240 days / year = 864000 cycles ii "Assumed loading spectrum is 70% of life half loaded 40kg participant, 20% of life with 60 kg particpant load 10% of life with 80 kg particpant A Hence analysis based on Miner. s summation using BS7608:1993 Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 Section: 5 Sheet: 18 of: 18

Advanced Computational Analysis