Advanced Computational Analysis

ACA

REPORT

REPORT NO: S2149-2

Revision A

Title: Closed-Form Analysis Of Forces And Moments In Bungee Trampoline Structure

Client: Mr James Oakey

Author: Dr M Lacey BSc PhD CEng F I Mech E

ADIPS Registration No.: 131539-0

Date: 26th February 2013

4A, Main Road, Gedling, Nottingham NG4 3HP Tel (0115) 9533931 e-mail: info@aca-consultants.co.uk

Summary

The results of the closed-form calculations for the loads transferred to the system from the bungee ropes substantiate those predicted by the finite element results. Whilst the forces and bending moments predicted by this analysis for the aluminium poles are slightly different from those predicted by the finite element analysis, it is clear that the finite element model is significantly more accurate and provides a close approximation to the true system.

Index

Summary	2
Method Of Analysis	4
Results	5
Conclusions	6
Figures	7
Calculations	10

Method Of Analysis

The analysis detailed below provides a closed-form estimate of the forces and moments which occur in a bungee trampoline structure, when a single passenger bounces vertically with a pre-defined vertical acceleration. This applied force is assumed to be a best estimate of the maximum force, since at the bottom of the descent the passenger is arrested by a trampoline.

The forces and moments derived in the analysis detailed below are based on a linear system of constraints and stiffness and a number of assumptions have to be made in order to provide an estimate of these forces and moments.

Assumptions

i) The structural system is linear and any frictional resistance is excluded.

ii) The motion of the passenger is purely vertical.

iii) Any restraint ropes offer no resistance to the deflexion of the structural frame.

iv) The self-weight of the structure is omitted.

v) The analysis assumes that only one passenger is active on the overall structure. Any additional load from other passengers bouncing simultaneously with the first passenger can be derived from kinematic summation of the forces in calculation sheets 1 to 4.

The forces and moments in the aluminium poles are verified in calculation sheets 1 to 7 below.

The results of the closed form calculations are compared with finite element results in table 1.0 below

Results

Item	Closed-Form Result	Finite Element Result
Vertical Reaction At Pulley R _V (N)	1705	1726
Horizontal Reaction At Pulley R _{HA} (N)	381	379
Horizontal Reaction At Pulley R _{BA} (N)	881	962
Vertical Force At Motor R _{VM} (N)	1645	1335
Horizontal Force At Motor R _{VM} (N)	763	757
Axial Force In Pole R _X (N)	1903	4710
Bending Moment In Pole About z-z axis M _{ZZMAX} (Nm)	3112	317
Bending Moment In Pole About y-y axis M _{YYMAX} (Nm)	1947	213

Table 1 – Summary Of Results For Stresses, Utilisation Factors Deflexions And Base Reaction Forces

Conclusions

The results of the closed-form calculations show that the resolved forces at the top of the aluminium poles are within 10 % of those predicted by the finite element analysis. In addition to this the resolved forces at the motor are within 20 % of each other. The small discrepancy in the results is due to the method used to model the pulleys at the top of the aluminium poles in the finite element analysis. The finite element analysis uses torsional spring elements with a low stiffness value, which enables the solution to converge. In using the torsional springs some of the tension in the bungee rope is removed from the bungee rope and transferred to the aluminium poles via a bending moment. However, since the results are within 20% of each other it is clear that the finite element model is a close approximation of the true situation.

Whilst the closed-form results for the resolved forces at the pulley and motor substantiate those predicted by the finite element analysis, the axial force and bending moments predicted in the aluminium poles are significantly different. The discrepancy is primarily due to the assumptions made above in that the system acts linearly and constraints are kinematically sufficient i.e. the effect of the cables has been neglected. In reality these cables would effectively act as a prop for the aluminium pole thereby significantly reducing the bending moments predicted by the closed-form calculations. In addition to this, since the cables are angled downwards the tension in the cables would increase the axial force in the aluminium poles, as predicted by the finite element analysis

In conclusion, the results of the closed-form calculations for the loads transferred to the system from the bungee ropes substantiate those predicted by the finite element results. Whilst the forces and bending moments predicted by this analysis for the aluminium poles are different from those predicted by the finite element analysis, it is clear that the finite element model is significantly more accurate and provides a close approximation to the true system.

M. Larey

Dr M. Lacey

Figures

Figure 1.1 – Typical View Of Bungee Trampoline

Figure 2.1 – Key To Location Of Symbols For Bungee Trampoline Arm

Figure 2.2 – Key To Location Of Symbols For Bungee Trampoline Arm

Calculation	IS						
Advance 4a, Main Roa Telephone 01	e d Compute ad, Gedling, Nottir 15 9533931 e-m	utional Analy Igham. NG4 3HP ail:info@aca-consulta	s<i>is</i> ants.co.uk				
Client :Airi	nax Inflatable	ACA Contract	t No : <i>S21</i> -	49-2		ACA	
Date : 27 th	February 2013					Engineering	
Description Trampoline	Description : Closed-Form Calculations For Trailer Mounted 4-Person Bungee Trampoline					Consultants	
1.0	Dimensions a	und Loads					
1.1	1) Dimension	S					
	a = 5.069 m	b = 2.8	72 m	c = 5.189 m	<i>d</i> =	= 2.407 m	
	e = 2.508 m	f = 4.8	339 m	g = 2.508 m	<i>h</i> =	= 4.08 m	
	2) Loads						
	The combined	l mass of the pass	enger and	harness is 90 kg. It is	assume	d that the maximum	
	vertical accel	eration of the pas	senger is 2	2 g. Hence the total ver	rtical lo	ad P into one side	
	of the system	is					
	$P = 90 \times 9.8$	81 = 883 N					
	Determinatio	n of reaction force	es at pulle	у			
	1) Tension in bungee rope.						
	Referring to f	igure 2.1					
	tension in bu	ngee rope is given	by				
	$Tsin(\theta) = P$	P is half the tota	ıl load froi	m the passenger			
	$tan(\theta) = \frac{a}{b}$ $sin(\theta) = \frac{a}{\sqrt{a^2 + b^2}}$ $cos\theta = \frac{b}{\sqrt{a^2 + b^2}}$						
	$\frac{T \times a}{\sqrt{a^2 + b^2}} = P$						
	Therefore						
	$T = \frac{P \times \sqrt{a^2 + b^2}}{a} = \frac{882.9 \times \sqrt{5.069^2 + 2.872^2}}{5.069} = 1014 N$						
Prepared F	N. R. Anderson	1		Checked By: Dr M	Ιαργ		
	y . R . <i>I</i> mac i s o i	ı					
© ACA 20	013	Section: 1		Sheet: 1 of	7		

l

Advanced Computational Analysis

4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

Contract No. S2149-2

Consultants 2) Total vertical reaction at pulley The total vertical reaction at pulley is given by $R_V = T \times sin(\theta) + T \times sin(\gamma)$ $tan(\gamma) = \frac{c}{\sqrt{b^2 + d^2}} \qquad sin(\gamma) = \frac{e}{\sqrt{b^2 + d^2 + c^2}}$ $cos(\gamma) = \frac{\sqrt{b^2 + d^2}}{\sqrt{b^2 + d^2 + c^2}}$ $R_V = T \times \frac{a}{\sqrt{a^2 + b^2}} + T \times \frac{c}{\sqrt{b^2 + d^2 + c^2}}$ $R_V = T \left(\frac{a}{\sqrt{a^2 + b^2}} + \frac{c}{\sqrt{b^2 + d^2 + c^2}} \right)$ Therefore $R_V = P \times \left(1 + \frac{c}{a} \times \frac{\sqrt{a^2 + b^2}}{\sqrt{b^2 + d^2 + c^2}} \right) =$ $882.9 \times \left(1 + \frac{5.189}{5.069} \times \frac{\sqrt{5.069^2 + 2.872^2}}{\sqrt{2.872^2 + 2.407^2 + 5.189^2}}\right) = 1705 N$ Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 Section: 2 Sheet: 2 of: 7

ACA

Engineering

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. ACA Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk Engineering Contract No. S2149 Consultants The horizontal reaction R_{HA} at the pulley is given by $R_{HA} = T \times cos(\gamma) \times cos(\phi)$ $tan(\phi) = \frac{b}{d} \qquad sin(\phi) = \frac{b}{\sqrt{b^2 + d^2}} \qquad cos(\phi) = \frac{d}{\sqrt{b^2 + d^2}}$ $R_{HA} = \frac{T \times \sqrt{b^2 + d^2}}{\sqrt{b^2 + d^2 + c^2}} \times \frac{d}{\sqrt{b^2 + d^2}}$ $R_{HA} = \frac{T \times d}{\sqrt{b^2 + d^2 + c^2}}$ Therefore $R_{HA} = P \times \frac{d}{a} \times \frac{\sqrt{a^2 + b^2}}{\sqrt{b^2 + d^2 + c^2}} = 882.9 \times \frac{2.407}{5.069} \times \frac{\sqrt{5.069^2 + 2.872^2}}{\sqrt{2.872^2 + 2.407^2 + 5.189^2}} = 381 N$ Prepared By: R. Anderson Checked By Dr M. Lacey © ACA 2013 Section: 2 Sheet: 3 of: 7

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

Contract No. S2149

ACA

Engineering

Consultants

Advanced Computational Analysis 4a, Main Road, Gedling, Nottingham. NG4 3HP. Telephone 0115 9533931 e-mail:info@aca-consultants.co.uk

Contract No. S2149

$$R_{HMA} = 2R_{HA}$$
Therefore
$$R_{HMA} = 2 \times P \times \frac{d}{a} \times \frac{\sqrt{a^2 + b^2}}{\sqrt{b^2 + d^2 + c^2}} =$$

$$2 \times 882.9 \times \frac{2.407}{5.069} \times \frac{\sqrt{5.069^2 + 2.872^2}}{\sqrt{2.872^2 + 2.407^2 + 5.189^2}} = 763 \text{ N}$$

$$R_{VMB} = 0$$
The pulley forces must now be resolved into the local co-ordinate system of the bungee pole, to determine the axial force, shear force and bending moment distribution in the pole. In figure 2.2 the x, y, z co-ordinate system is local co-ordinate system for the pole 1) Resolving forces into x-direction
$$R_X = (R_{HA} \times \sin(\alpha) + R_{HB} \times \cos(\alpha)) \times \sin(\omega) + R_V \times \cos(\omega)$$

$$\tan(\alpha) = \frac{g}{e} \qquad \sin(\alpha) = \frac{g}{\sqrt{g^2 + e^2}} \qquad \cos(\alpha) = \frac{e}{\sqrt{g^2 + e^2}}$$

$$\tan(\omega) = \frac{\sqrt{g^2 + e^2}}{f} \qquad \sin(\omega) = \frac{\sqrt{g^2 + e^2}}{\sqrt{g^2 + e^2 + f^2}} \qquad \cos(\omega) = \frac{f}{\sqrt{g^2 + e^2 + f^2}}$$

$$R_X = \frac{(R_{HA} \times g + R_{HB} \times e)}{\sqrt{g^2 + e^2}} \times \frac{\sqrt{g^2 + e^2}}{\sqrt{g^2 + e^2 + f^2}} + \frac{R_V \times f}{\sqrt{g^2 + e^2 + f^2}}$$
Prepared By: *R. Anderson*
(Checked By Dr M. Lacey)
(S ACA 2013) Section: 3 Sheet: 5 of: 7

ACA

Engineering

Advanced Com	putational Analysis		
Telephone 0115 953393	1 e-mail:info@aca-consultants.co.	uk	ACA
Contract No. S2149)		Engineering Consultants
Theref	fore		
P	$R_{HA} \times g + R_{HB} \times e + R_V \times f$	_	
$\Lambda \chi =$	$\sqrt{g^2 + e^2 + f^2}$	- =	
381.6.	1×2.508+881.845×2.508+	$\frac{1705.574 \times 4.839}{1903} = 1903 N$	
	$\sqrt{2.508^2 + 2.508^2 + 4}$	<u>- 1705 1.</u>	
axial f	orce in pole		
2) Rest	olving forces in y direction		
$R_Y =$	$(R_{HA} \times sin(\alpha) + R_{HB} \times cos(\alpha))$	$(\alpha)) \times \cos(\omega) - R_V \times \sin(\omega)$	
$R_Y =$	$\frac{\left(R_{HA} \times g + R_{HB} \times e\right) \times f}{\sqrt{g^2 + e^2} \times \sqrt{g^2 + e^2} + f^2}$	$-\frac{R_V \times \sqrt{g^2 + e^2}}{\sqrt{g^2 + e^2 + f^2}}$	
Theref	ore	VO J	
$R_Y =$	$\frac{\left(R_{HA} \times g + R_{HB} \times e\right) \times f - H}{\sqrt{g^2 + e^2} \times \sqrt{g^2 + e^2}}$	$\frac{R_V \times \left(g^2 + e^2\right)}{e^2 + f^2} =$	
(381.6	$51 \times 2.508 + 881.845 \times 2.508$) $\sqrt{2.508^2 + 2.508^2} \times \sqrt{2.508^2 + 2.508^2}$	$\frac{\times 4.839 - 1705.574 \times \left(2.508^2 + 2.508^2 + 2.508^2 + 4.839^2\right)}{2.508^2 + 2.508^2 + 4.839^2}$	$\frac{508^2}{2} = -287 N$
v direc	tion shear in pole		
,	non shear in pore		
Prepared By: <i>R. An</i>	derson	Checked By Dr M. Lacey	
	Section 2	Short 6 of 7	
⊌ ACA 2013	section: 5	sneet: 0 of: /	

